If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+72t=4=0
We move all terms to the left:
-16t^2+72t-(4)=0
a = -16; b = 72; c = -4;
Δ = b2-4ac
Δ = 722-4·(-16)·(-4)
Δ = 4928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4928}=\sqrt{64*77}=\sqrt{64}*\sqrt{77}=8\sqrt{77}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{77}}{2*-16}=\frac{-72-8\sqrt{77}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{77}}{2*-16}=\frac{-72+8\sqrt{77}}{-32} $
| -s+1/3=-4 | | .6+.6x=6.6 | | 1/2(4x+8)=4x+8 | | e+3e+2+55=180 | | 16+5/8x=56 | | 20+0.44x+4=19+1.69x. | | 8v+12+19v=19v+20 | | 27=p−44 | | (2x+10)(2x-5)=129 | | m8=4 | | q+19=39 | | 45(=9+5n) | | 3x-9=-3(x-5) | | 50a-5=95 | | 63x+2=102 | | M1=5x-15 | | 13n+1=27 | | 12x+5=-3x+20 | | H(t)=-16^2+140t+22 | | 8x-13=5x+35 | | 5=7/2(3x+2) | | 3.6p=7.28 | | −x(6x+7)(x2−36)=0 | | -8x+32=-4x | | 2x-4+4x=180 | | 2x+4+4x=189 | | -6x-11=19 | | -6x-11=19 | | -6x-11=19 | | -9.02(14+9w)=15 | | -9.02(14+9w)=15 | | -9.02(14+9w)=15 |